

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-X

Subject: MATHEMATICS

Chapter Name : Introduction to Trigonometry (Chap : 8)

[MCQ(2+1AR)-1 Mark, SA-1(1)-2 Marks, SA-II(1)-3 Marks

Level - 2 (Higher Order)

MCQ Type :

1. If $x = r \sin A \cos C$ and $y = r \sin A \sin C$ and $z = r \cos A$, then the value of $x^2 + y^2 + z^2$ is :

(A) $\frac{1}{r^2}$ (B) r^2 (C) $\frac{r^2}{2}$ (D) $\frac{r}{2}$

(Hints : Squaring and adding)

2. If triangles ABC and PTR are similar such that $\angle C = \angle R = 90^\circ$ and $\frac{AC}{AB} = \frac{3}{5}$ then, $\sin T$ is :

(A) $\frac{3}{5}$ (B) $\frac{5}{3}$ (C) $\frac{4}{5}$ (D) $\frac{5}{4}$

(Hints : Applying similarity find angle T)

3. $\tan x + \sin x = m$ and $\tan x - \sin x = n$, then $(m^2 - n^2)$ is equal to :

(A) $4\sqrt{mn}$ (B) \sqrt{mn} (C) $2\sqrt{mn}$ (D) None of these

(Hints : Put the value of m and n and simplify)

4. $\frac{\cos 60^\circ + \sin 60^\circ}{\cos 60^\circ - \sin 60^\circ} = \dots$:

(A) $-\sqrt{3} + 2$ (B) $-2 - \sqrt{3}$ (C) $\sqrt{3} - 2$ (D) None of these

(Hints : Put standard angle value)

5. If $\sin A = \frac{12}{13}$, then the value of $\frac{13\sin A + 5\sec A}{5\tan A + 12\cosec A}$ will be :

(A) 9 (B) 8 (C) 4 (D) None of these

(Hints : Find secA, tanA and cosecA value)

6. If θ increases from θ to 90° then, $\sin\theta$ changes according to :

(A) from $-\infty$ to 0 (B) from 0 to 1 (C) from $-\infty$ to 1 (D) None of these

7. Evaluate $\sqrt{\frac{1 - \sin A}{1 + \sin A}}$

(A) $\cos A + \tan A$ (B) $\cos A - \tan A$ (C) $\tan A - \cot A$ (D) $\sec A + \tan A$

(Hints : Multiply both Nu. and Dn. by $(1 - \sin A)$)

8. In a triangle PQR, right-angled at Q, $PR + QR = 25$ cm and $PQ = 5$ cm, then the value of $\sin P$ is

(A) $\frac{7}{25}$ (B) $\frac{24}{25}$ (C) 1 (D) None of these

(Hints : let $PR = x$ cm, $QR = (25-x)$ cm. Use Pythagoras theorem)

9. The value of $2\cos^2 60^\circ + 3\sin^2 45^\circ - 3\sin^2 30^\circ + 2\cos^2 90^\circ$ is

(A) 1 (B) 5 (C) 5/4 (D) None of these

(Hints : Put standard angle value)

10. $(1 + \tan A + \sec A)(1 + \cot A - \cosec A) =$

(A) 0

(B) 1

(C) 2

(D) -1

(Hints : Multiply and simplify)

ASSERTION & REASON BASED QUESTIONS (Q. 11 - 14)

Directions : In each of the questions given below, there are two statements marked as Assertion (A) and Reason (R). Mark your answer as per the codes provided below :

- a. Both A and R are true and R is the correct explanation of A.
- b. Both A and R are true but R is not the correct explanation of A.
- c. A is true but R is false.
- d. A is false but R is true.

11. **Assertion (A) :** If $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$ and $x \sin \theta = y \cos \theta$, then $x^2 + y^2 = 1$

Reason (R) : For any value of θ , $\sin^2 \theta + \cos^2 \theta = 1$

(A) a

(B) b

(C) c

(D) d

12. **Assertion (A) :** $\sin(A + B) = \sin A + \sin B$.

Reason (R) : For any value of θ , $1 + \tan^2 \theta = \sec^2 \theta$

(A) a

(B) b

(C) c

(D) d

13. **Assertion (A) :** The value of $\sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ$ is 1.

Reason (R) : $\sin 90^\circ = 1$ and $\cos 90^\circ = 0$

(A) a

(B) b

(C) c

(D) d

14. **Assertion (A) :** The value of $\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} + \sin \theta \cos \theta$ is 1

Reason (R) : $\sin^2 A + \cos^2 A = 1$, for any value of A.

(A) a

(B) b

(C) c

(D) d

SA-1 Type :

15. Simplify : $\cos^4 A - \sin^4 A$

(Hints : Apply $a^2 - b^2 = (a+b)(a-b)$)

16. If θ is an acute angle and $\tan \theta + \cot \theta = 2$, then find the value of $\sin^3 \theta + \cos^3 \theta$.

(Hints : Break $\tan \theta$ and $\cot \theta$ in terms $\sin \theta$ and $\cos \theta$ and simplify)

17. ΔABC right angled at B, $\sin A = \frac{7}{25}$, then find the value of $\cos C$.

(Hints : $\sin A = \cos C$)

18. If $2\sin^2 \beta - \cos^2 \beta = 2$, then find β .

(Hints : Use the identity $\sin^2 \theta + \cos^2 \theta = 1$)

19. Find an acute angle θ when $\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$

(Hints : Use componendo-dividendo to find $\tan \theta$)

20. Prove that $(\sin A + \cosec A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$

(Hints : $(a+b)^2$ formula and three basic identities.)

SA-II Type :

21. Evaluate : $4(\sin^4 30^\circ + \cos^4 60^\circ) - 3(\cos^2 45^\circ - \sin^2 90^\circ) + 5 \cos^2 90^\circ$

(Hints : Put standard angle values and simplify)

22. Using the formula, $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$, find the value of $\tan 60^\circ$, it being given that $\tan 30^\circ = \frac{1}{\sqrt{3}}$

(Hints : Put $A = 30^\circ$)

23. If A and B are acute angles such that $\tan A = \frac{1}{3}$, $\tan B = \frac{1}{2}$ and $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$,

Show that $A + B = 45^\circ$.

(Hints : Put the value of $\tan A$ and $\tan B$ and simplify)

24. Prove that: $\frac{1 + \sin A - \cos A}{1 + \sin A + \cos A} = \sqrt{\frac{1 - \cos A}{1 + \cos A}}$

(Hints : L.H.S divide both Nu. and Dn. by $\sin A$ and simplify. R.H.S both Nu. and Dn. multiply by $(1 - \cos A)$)

25. Prove that: $\sqrt{\frac{\sec A - 1}{\sec A + 1}} + \sqrt{\frac{\sec A + 1}{\sec A - 1}} = 2 \cosec A$

(Hints : Simplify L.H.S by addition concept and use identity $\sec^2 A - 1 = \tan^2 A$)

ANSWER

Section - A

- 1. (B)
- 2. (A)
- 3. (A)
- 4. (B)
- 5. (D)
- 6. (B)
- 7. (D)
- 8. (D)
- 9. (C)
- 10. (C)
- 11. (A)
- 12. (D)
- 13. (B)
- 14. (A)

- 15. $1 - 2\sin^2 A$
- 16. $\frac{1}{\sqrt{2}}$
- 17. $\frac{7}{25}$
- 18. 90°
- 19. 60°
- 21. 2
- 22. $\sqrt{3}$